(устаревшее - аэроплан)
летательный аппарат тяжелее воздуха для полётов в атмосфере с помощью двигателей и неподвижных, как правило, крыльев. Благодаря большой скорости, грузоподъёмности и радиусу действия, надёжности в эксплуатации, высокой манёвренности С. получил наибольшее распространение из всех типов летательных аппаратов (См.
Летательный аппарат) и применяется для транспортирования пассажиров и грузов, а также для военных и специальных целей. Историю развития и основные данные С. см. в ст.
Авиация.
Классификация самолётов. По назначению различают гражданские и военные С. К гражданским С. относятся: транспортные (пассажирские, грузопассажирские, грузовые), спортивные, рекордные (для установления рекордов скорости, скороподъёмности (См.
Скороподъёмность), высоты, дальности полёта и т. п.), туристические, административные, учебно-тренировочные, сельскохозяйственные, специального назначения (например, для спасательных работ, телеуправляемые) и экспериментальные. Военные С. предназначены для поражения воздушных, наземных (морских) целей или для выполнения других боевых задач; подразделяются на истребители-бомбардировщики, бомбардировщики, разведчики, транспортные, С. связи и санитарные. Подробнее см. в ст.
Военно-Воздушные Силы,
Истребительная авиация,
Истребительно-бомбардировочная авиация,
Бомбардировочная авиация,
Разведывательная авиация,
Военно-транспортная авиация.
В основу классификации С. по конструкции положены внешние признаки: число и расположение крыльев и двигателей, форма и расположение оперения и т. п. На
рис. 1 показаны основные типы С. В зависимости от числа крыльев различают
Монопланы, т. е. С. с одним крылом, и
Бипланы - С. с двумя крыльями, находящимися одно над другим. Бипланы, у которых одно из крыльев короче другого, называются полуторапланами. Бипланы манёвреннее монопланов, но имеют большее лобовое сопротивление, что снижает скорость полёта С. Поэтому большинство современных С. выполняется по схеме моноплана. В зависимости от положения крыла относительно фюзеляжа С. делятся на низкопланы, среднепланы и высокопланы. По положению оперения различают С. классические схемы (оперение размещается позади крыла), С. типа "утка" (горизонтальное оперение располагается впереди крыла) и С. типа "бесхвостка" (оперение размещается на крыле). Классическая схема С. может быть с однокилевым оперением, разнесённым вертикальным (многокилевым) оперением и V-образным оперением. В зависимости от типа шасси С. подразделяют на сухопутные,
Гидросамолёты и амфибии (гидросамолёты, оборудованные колёсными шасси). По типу двигателей различают винтомоторные, турбовинтовые и турбореактивные С. В зависимости от скорости полёта различают С. дозвуковые (скорость С. соответствует Маха числу (См.
Маха число) М < 1), сверхзвуковые (5 > М ≥ 1) и гиперзвуковые (М ≥ 5).
Аэродинамика самолёта. В результате воздействия на крыло воздушного потока возникает аэродинамическая сила R (см. Аэродинамические сила и момент (См.
Аэродинамическая сила)). Вертикальная составляющая этой силы по отношению к потоку называется подъёмной силой (См.
Подъёмная сила)
Y
, горизонтальная составляющая - силой лобового сопротивления Q (см.
Аэродинамическое сопротивление). Лобовое сопротивление является суммой сил трения воздуха о поверхность крыла Q
тр, давления воздушного потока Q
давл (объединяемых общим название профильного сопротивления - Q
проф = Q
тр + Q
давл) и индуктивного сопротивления Q
инд, возникающего при наличии подъёмной силы на крыле. Q
инд обусловливается образованием на концах крыла вихрей воздуха вследствие перетекания его из области повышенного давления под крылом в область пониженного давления над крылом. При скорости полёта, близкой к скорости звука, может возникать
Волновое сопротивление Q
полн. Подъёмная сила С. обычно равна подъёмной силе крыла, лобовое сопротивление - сумме сопротивлений крыла, фюзеляжа, оперения и др. частей С., обтекаемых потоком воздуха, а также сопротивления интерференции (взаимного влияния этих частей) Q
инт. Отношение подъёмной силы к лобовому сопротивлению
называется аэродинамическим качеством. Максимальное значение аэродинамического качества современного С. достигает 10-20.
Силовая установка самолёта состоит из авиационных двигателей (См.
Авиационный двигатель) и различных систем и устройств - воздушных винтов (См.
Воздушный винт), пожарного оборудования, топливной системы, систем всасывания воздуха, запуска, смазки, изменения направления тяги и др. При выборе места установки двигателей, их числа и типа учитывают аэродинамическое сопротивление, создаваемое двигателями, разворачивающий момент, возникающий при отказе одного из двигателей, сложность устройства воздухозаборников, возможность обслуживания и замены двигателей, уровень шума в пассажирском салоне и т. п.
Конструкция самолёта. Основные части -
Крыло,
Фюзеляж,
Шасси и
Оперение самолёта. На
рис. 2 показана компоновочная схема турбореактивного пассажирского С. Ил-62. Крыло создаёт подъёмную силу при движении С. Обычно неподвижно закрепляется на фюзеляже, но иногда может поворачиваться относительно поперечной оси С. (например, у С. вертикального взлёта и посадки) или изменять конфигурацию (стреловидность, размах). На крыле устанавливаются рули крена (
Элероны) и элементы механизации крыла (См.
Механизация крыла). Фюзеляж служит для размещения экипажа, пассажиров, грузов и оборудования. Конструктивно связывает между собой крыло, оперение, иногда шасси и силовую установку. Шасси предназначается для взлёта и посадки, а также для передвижения С. по аэродрому. На С. могут устанавливаться колёсные шасси, поплавки (на гидросамолётах), лыжи и гусеницы (у С. повышенной проходимости). Шасси бывают убирающимися в полёте и неубирающимися. С. с убирающимися шасси имеет меньшее лобовое сопротивление, но тяжелее и сложнее по конструкции. Оперение предназначается для обеспечения устойчивости, управляемости и балансировки С.
Системы управления и оборудование. Системы управления С. разделяются на основные и вспомогательные. К основным принято относить системы управления воздушными рулями (См.
Воздушные рули). Вспомогательные системы служат для управления двигателями, триммерами рулей, шасси, тормозами, люками, дверями и т. п. Управление С. производится с помощью штурвальной колонки или ручки управления, педалей, переключателей и т. п., расположенных в кабине экипажа. Для облегчения пилотирования и повышения безопасности полёта в систему управления могут включаться
Автопилоты и бортовые вычислители (См.
Бортовой вычислитель); управление делается двойным. Уменьшение нагрузок, действующих на рычаги управления при отклонении рулей, обеспечивается гидравлическими, пневматическими или электрическими усилителями (называемыми бустерами), устройствами сервокомпенсации (См.
Сервокомпенсация). Управление С. в случае, когда воздушные рули неэффективны (полёт в сильно разреженной атмосфере, на С. вертикального взлёта и посадки), осуществляется газовыми рулями (См.
Газовый руль).
Оборудование С. включает приборное, радио-, электрооборудование, противообледенительные устройства (См.
Противообледенительное устройство), высотное, бытовое и специальное оборудование, а для военных С. также вооружение (пушки, ракеты, авиационные бомбы) и бронирование. Приборное оборудование в зависимости от назначения подразделяется на пилотажно-навигационное (
Вариометры,
Авиагоризонты,
Компасы, автопилоты и т. п.), для контроля за работой двигателей (манометры, расходомеры и т. п.) и вспомогательное (амперметры, вольтметры и др.). Электрооборудование С. обеспечивает работу приборов, средств управления, радио, системы пуска двигателей, освещения. Радиооборудование включает в себя средства радиосвязи (См.
Радиосвязь) и радионавигации (См.
Радионавигация), радиолокационное оборудование, системы автоматического взлёта и посадки. Для обеспечения безопасности и защиты человека при полёте на больших высотах служит высотное оборудование С. (системы кондиционирования воздуха, кислородного питания и др.). Удобство размещения пассажиров и экипажа, комфорт обеспечиваются бытовым оборудованием. К специальному оборудованию относятся системы автоконтроля работы оборудования и конструкции С., аэрофотосъёмки (См.
Аэрофотосъёмка), оборудование для перевозки больных и раненых и т. п.
Самолёты вертикального взлёта и посадки (СВВП) и самолёты короткого взлёта и посадки (СКВП). Увеличение скоростей полёта С. приводит к росту взлётно-посадочных скоростей, в результате чего длина взлётно-посадочных полос достигает нескольких километров. В связи с этим создаются СКВП и СВВП. СКВП имеют при высокой крейсерской скорости (600-800
км/ч) длину взлётно-посадочной дистанции не более 600-650
м. Сокращение взлётно-посадочной дистанции в основном достигается применением мощной механизации крыла и управления пограничным слоем (См.
Пограничный слой), использованием ускорителей на взлёте и устройств для гашения скорости при посадке, отклонением вектора тяги маршевых двигателей. Вертикальный взлёт и посадка СВВП обеспечиваются специальными подъёмными двигателями, отклонением реактивных сопел или поворотом основных двигателей, как правило, турбореактивных (ТРД). Типовые схемы СВВП показаны на
рис. 3.
Лит.: Паленый Э. Г., Оборудование самолетов, М., 1968; Курочкин Ф. П., Основы проектирования самолетов с вертикальным взлетом и посадкой, М., 1970; Шульженко М. Н., Конструкция самолетов, 3 изд., М., 1971; Никитин Г. А., Баканов Е. А., Основы авиации, М., 1972; Проектирование самолетов, 2 изд., М., 1972; Шейнин В. М., Козловский В. И., Проблемы проектирования пассажирских самолетов, М., 1972; Schmidt Н. A. F., Lexikon Luftfahrt, В., 1971; Jane's, all the world's aircraft, L.,
1909-.
Г. А. Никитин, Е. А. Баканов.
Рис. 1. Основные типы самолётов.
Рис. 2. Турбореактивный самолёт Ил-62: 1 - передняя стойка шасси; 2 - кабина экипажа; 3 - входная дверь; 4 - фюзеляж; 5 - передний пассажирский салон; 6 - основная стойка шасси; 7 - крыло; 8 - двигатели; 9 - технический отсек; 10 - стабилизатор; 11 - антенна; 12 - киль; 13 - задний пассажирский салон; 14 - буфет; 15 - гардероб.
Рис. 3. Самолёты вертикального взлёта и посадки.